The Figures in the margin indicate full marks.
Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following :

Find the value of $\lim _{z \rightarrow i} \frac{i z+1}{z-i}$
(II)

Find the residue of $f(z)=e^{-\frac{1}{z}}$ at $z=0$.
(III)

Find the value of the integral $\oint_{c}(x d y-y d x)$ where C is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(IV) Find the IF of the differential equation $\frac{d y}{d x}-3 y=\sin 2 x$.
(v) Write the general solution of the ordinary differential equation $\frac{d^{2} y}{d x^{2}}+4 y=0$.

Is the function $\mathrm{f}(z)=|z|^{2}$ continuous everywhere?
(VII)

Find $\frac{1}{D^{2}+4}(x)$
(vili) If $f(z)=u+i v$ is an analytic function in a finite region and $u=x^{3}-3 x y^{2}$, then find v.
Find the residue of $\frac{z^{2}}{z^{2}+a^{2}}$ at $z=i a$.
(X)

Find the value of $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin \theta} r^{2} \sin \theta d r d \theta$
Find the value of $\iint_{S} \overrightarrow{\mathrm{~F} .} \hat{n} d S$, where $\mathrm{F}=4 x z \hat{\imath}-y^{2} \hat{\jmath}+\mathrm{yz} \hat{k}$, where S is the surface of cube given by $x=0, x=1 ; y=0, y=1 ; z=0, z=1$.
(XII)

Find the singular solution of $y=p x-\frac{1}{4} p^{2}$.

Group-B (Short Answer Type Question)

Answer any three of the following :
2.

Prove that $\lim _{Z \rightarrow 0} \frac{\bar{z}}{Z}$ does not exist.
3.

Evaluate $\oint_{|z|=1} \frac{e^{3 z}}{(4 z-\pi i)^{3}} d z$.
4.

Solve:

$(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$
5.

Show that $\mathrm{J}_{-\frac{1}{2}}(\mathrm{x})=\sqrt{\frac{2}{\pi \mathrm{x}}} \cos \mathrm{x}$
6.

Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=x \operatorname{Sin}(\log x)$

Group-C (Long Answer Type Question)

Answer any three of the following :
7. (a) Show that $(3 x+4 y+5) d x+(4 x-3 y+3) d y=0$ is an exact eauation and hence solve it.
(b)

Solve: $\frac{d y}{d x}-\frac{d x}{d y}=\frac{x}{y}-\frac{y}{x}$.
(c)

Solve: $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$
8. (a)

Prove that $J_{0}^{\prime}=-J_{1}$.
(b)

Express $J_{4}(x)$ in terms of J_{0} and J_{1}
(c) Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=\operatorname{Sec} a x,(a \neq 0)$
9. (a) Use the transformation $u=x+y$ and $u v=y$, evaluate the double integration $\int_{0}^{1} d x \int_{0}^{1-x} e^{\frac{y}{x+y}} d y$.
(b) Evaluate $\iiint(x+y+z+1)^{4} d x d y d z$, over the region bounded $x \geq 0$, $y \geq 0, z \geq 0, x+y+z \leq 1$.
(c) Evaluate $\iiint z^{2} d x d y d z$, extended over the hemisphere $z \geq 0, x^{2}+y^{2}+$ $z^{2} \leq a^{2}$.
10. (a) Determine the analytic function $f(z)=u+i v$ whose imaginary part is $v(x, y)=$ $e^{x} \sin y$.
(b) Prove that $u(x, y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and find its conjugate harmonic function $v(x, y)$ such that $f(z)=u+i v$ is analytic.
(c) Show that the transformation $f(z)=\frac{z+i}{z-i}$ maps the interior of the circle $|w|=1$ i.e. $|w| \leq 1$ into the lower half plane $I(z) \leq 0$.
11. (a) Prove that $(x+y+1)^{-4}$ is an integrating factor of the differential equation

$$
\left(2 x y-y^{2}-y\right) d x+\left(2 x y-x^{2}-x\right) d y=0
$$

and hence solve it.
(b)

Solve: $3 y d x-2 x d y+x^{2} y^{-1}(10 y d x-6 x d y)=0$
(c)

Solve: $\frac{d y}{d x}+y=y^{3}(\cos x-\sin x)$.

