

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BSM202 Mathematics - IIB UPID: 002006

Time Allotted : 3 Hours Full M

Full Marks :70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following:

 $[1 \times 10 = 10]$

Find the value of $\lim_{z \to i} \frac{iz+1}{z-i}$

Find the residue of $f(z) = e^{-\frac{1}{z}}$ at z = 0.

Find the value of the integral $\oint_c (xdy - ydx)$ where C is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Find the IF of the differential equation $\frac{dy}{dx} - 3y = \sin 2x$.

Write the general solution of the ordinary differential equation $\frac{d^2y}{dx^2} + 4y = 0$.

Is the function $f(z) = |z|^2$ continuous everywhere?

Find $\frac{1}{D^2+4}(x)$

If f(z) = u + iv is an analytic function in a finite region and $u = x^3 - 3xy^2$, then find v.

Find the residue of $\frac{z^2}{z^2+a^2}$ at z=ia.

Find the value of $\int_0^{\frac{\pi}{2}} \int_0^{\sin\theta} r^2 \sin\theta dr d\theta$

Find the value of $\iint_S \overrightarrow{F} \cdot \widehat{n} \, dS$, where $F = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$, where S is the surface of cube given by x = 0, x = 1; y = 0, y = 1; z = 0, z = 1.

Find the singular solution of $y = px - \frac{1}{4}p^2$.

Group-B (Short Answer Type Question)

Answer any three of the following:

 $[5 \times 3 = 15]$

Prove that $\lim_{Z\to 0} \frac{\bar{Z}}{Z}$ does not exist.

[5]

[5] Evaluate $\oint_{|z|=1} \frac{e^{3z}}{(4z-\pi i)^3} dz$. [5] Solve: $(xy\sin xy + \cos xy)ydx + (xy\sin xy - \cos xy)xdy = 0$ 5. [5] Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ 6. [5] Solve: $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 4y = x Sin(log x)$ **Group-C (Long Answer Type Question)** Answer any three of the following: $[15 \times 3 = 45]$ [5] Show that (3x + 4y + 5)dx + (4x - 3y + 3)dy = 0 is an exact equation and hence solve it. (b) [5] Solve: $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$. (c) [5] Solve: $(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$ 8. (a) [4] Prove that $J_0' = -J_1$. [5] Express $J_4(x)$ in terms of J_0 and J_1 (c) Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} + a^2y = Sec \ ax$, $(a \neq 0)$ [6] 9. (a) Use the transformation u = x + y and uv = y, evaluate the double [5] integration $\int_0^1 dx \int_0^{1-x} e^{\frac{y}{x+y}} dy$. (b) [5] Evaluate $\iiint (x + y + z + 1)^4 dx dy dz$, over the region bounded $x \ge 0$, $y \ge 0, z \ge 0, x + y + z \le 1.$ [5] Evaluate $\iiint z^2 dx dy dz$, extended over the hemisphere $z \ge 0$, $x^2 + y^2 + 1$ $z^2 < a^2$. Determine the analytic function f(z) = u + iv whose imaginary part is v(x, y) =[5] $e^x \sin y$. [5] Prove that $u(x, y) = \frac{1}{2} log(x^2 + y^2)$ is harmonic and find its conjugate harmonic function v(x, y) such that f(z) = u + iv is analytic. [5] Show that the transformation $f(z) = \frac{z+i}{z-i}$ maps the interior of the circle |w| = 1 i. e. $|w| \le 1$ into the lower half plane $I(z) \leq 0$.

Prove that $(x + y + 1)^{-4}$ is an integrating factor of the differential equation

$$(2xy - y^2 - y)dx + (2xy - x^2 - x)dy = 0$$

and hence solve it.

Solve:
$$3ydx - 2xdy + x^2y^{-1}(10ydx - 6xdy) = 0$$

Solve:
$$\frac{dy}{dx} + y = y^3(\cos x - \sin x)$$
.

*** END OF PAPER ***

[5]

[5]